Single-shot lensless imaging via simultaneous multi-angle LED illumination

Lensless imaging is a technique that records diffraction patterns without using lenses and recovers the complex field of object via phase retrieval. Robust lensless phase retrieval process usually requires multiple measurements with defocus variation, transverse translation or angle-varied illuminat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-08, Vol.26 (17), p.21418-21432
Hauptverfasser: Zhou, You, Wu, Jiamin, Suo, Jinli, Han, Xiaofei, Zheng, Guoan, Dai, Qionghai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lensless imaging is a technique that records diffraction patterns without using lenses and recovers the complex field of object via phase retrieval. Robust lensless phase retrieval process usually requires multiple measurements with defocus variation, transverse translation or angle-varied illumination. However, making such diverse measurements is time-consuming and limits the application of lensless setup for dynamic samples. In this paper, we propose a single-shot lensless imaging scheme via simultaneous multi-angle LED illumination. Diffraction patterns under multi-angle lights are recorded by different areas of the sensor within a single shot. An optimization algorithm is applied to utilize the single-shot measurement and retrieve the aliasing information for reconstruction. We first use numerical simulations to evaluate the proposed scheme quantitatively by comparisons with the multi-acquisition case. Then a proof-of-concept lensless setup is built to validate the method by imaging a resolution chart and biological samples, achieving ∼ 4.92 μm half-pitch resolution and ∼ 1.20 mm field of view (FOV). We also discuss different design tradeoffs and present a 4-frame acquisition scheme (with ∼ 3.48 μm half-pitch resolution and ∼ 2.35 × 2.55 mm FOV) to show the flexibility of performance enhancement by capturing more measurements.
ISSN:1094-4087
DOI:10.1364/OE.26.021418