A Microscale Yeast Cell Disruption Technique for Integrated Process Development Strategies

Miniaturizing protein purification processes at the microliter scale (microscale) holds the promise of accelerating process development by enabling multi-parallel experimentation and automation. For intracellular proteins expressed in yeast, small-scale cell breakage methods capable of disrupting th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2008-01, Vol.24 (3), p.606-614
Hauptverfasser: Wenger, Marc D, DePhillips, Peter, Bracewell, Daniel G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Miniaturizing protein purification processes at the microliter scale (microscale) holds the promise of accelerating process development by enabling multi-parallel experimentation and automation. For intracellular proteins expressed in yeast, small-scale cell breakage methods capable of disrupting the rigid cell wall are needed that can match the protein release and contaminant profile of full-scale methods like homogenization, thereby enabling representative studies of subsequent downstream operations to be performed. In this study, a noncontact method known as adaptive focused acoustics (AFA) was optimized for the disruption of milligram quantities of yeast cells for the subsequent purification of recombinant human papillomavirus (HPV) virus-like particles (VLPs). AFA operates by delivering highly focused, computer-controlled acoustic radiation at frequencies significantly higher than those used in conventional sonication. With this method, the total soluble protein release was equivalent to that of laboratory-scale homogenization, and cell disruption was evident by light microscopy. The recovery of VLPs through a microscale chromatographic purification following AFA treatment was within 10% of that obtained using homogenization, with equivalent product purity. The addition of a yeast lytic enzyme prior to cell disruption reduced processing time by nearly 3-fold and further improved the comparability of the lysate to that of the laboratory- scale homogenate. In addition, unlike conventional sonication methods, sample heating was minimized (
ISSN:8756-7938
DOI:10.1021/bp070359sPII:S8756-7938(07)00359-1