Molecular characterization of wdr68 gene in embryonic development of Xenopus laevis

WDR68, also known as DCAF7, is a WD40 repeated domain protein highly conserved in eukaryotic organisms in both plants and animals. This protein participates in numerous cellular processes and exerts its function through interaction with other proteins. In the present work, we isolated, sequenced and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene Expression Patterns 2018-12, Vol.30, p.55-63
Hauptverfasser: Bonano, Marcela, Martín, Eduardo, Moreno Ruiz Holgado, María Macarena, Silenzi Usandivaras, Gabriela María, Ruiz De Bigliardo, Graciela, Aybar, Manuel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:WDR68, also known as DCAF7, is a WD40 repeated domain protein highly conserved in eukaryotic organisms in both plants and animals. This protein participates in numerous cellular processes and exerts its function through interaction with other proteins. In the present work, we isolated, sequenced and characterized cDNA corresponding to the wdr68 gene in embryos of the amphibian Xenopus laevis. Syntenic analysis revealed high conservation of the genomic region containing the WDR68 locus in amniotes. Nevertheless, in fishes and amphibians, we observed that the tandem genes surrounding wdr68 undergoes certain rearrangements with respect to the organization found in amniotes. We also defined the temporal and spatial expression pattern of the wdr68 gene in the development of Xenopus laevis through whole mount in situ hybridization and RT-PCR techniques. We observed that wdr68 is ubiquitously expressed during early embryonic development but, during the neurula stage, it undergoes a strong expression in the neural tube and in the migratory cephalic streams of the neural crest. At the tailbud stages, it is strongly expressed in the cephalic region, particularly in otic and optic vesicles, in addition to branchial arches. In contrast, wdr68 transcripts are localized in the somitic mesoderm in the trunk. The expression area that includes the migratory neural crest of the head and the branchial arches suggest that this gene would be involved in jaws formation, probably through a hierarchical relationship with the component genes of the endothelin-1/endothelin receptor type A cell signaling pathway.
ISSN:1567-133X
1872-7298
DOI:10.1016/j.gep.2018.08.001