Sources of debris flow material in burned areas

The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomorphology (Amsterdam, Netherlands) Netherlands), 2008-04, Vol.96 (3), p.310-321
Hauptverfasser: Santi, Paul M., deWolfe, Victor G., Higgins, Jerry D., Cannon, Susan H., Gartner, Joseph E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9 m 3 of debris produced for every meter of channel length, with an overall average value of 2.5 m 3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3 m 3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are much more important sources of debris than rills. Levees are very common, but the size and effect on the amount of debris that reaches a canyon mouth is highly variable.
ISSN:0169-555X
1872-695X
DOI:10.1016/j.geomorph.2007.02.022