On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics
High visibility on-chip quantum interference among indistinguishable single-photons from multiples sources is a key prerequisite for integrated linear optical quantum computing. Resonant enhancement in micro-ring resonators naturally enables brighter, purer and more indistinguishable single-photon p...
Gespeichert in:
Veröffentlicht in: | Optics express 2018-08, Vol.26 (16), p.20379-20395 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High visibility on-chip quantum interference among indistinguishable single-photons from multiples sources is a key prerequisite for integrated linear optical quantum computing. Resonant enhancement in micro-ring resonators naturally enables brighter, purer and more indistinguishable single-photon production without any tight spectral filtering. The indistinguisha-bility of heralded single-photons from multiple micro-ring resonators has not been measured in any photonic platform. Here, we report on-chip indistinguishability measurements of heralded single-photons generated from independent micro-ring resonators by using an on-chip Mach-Zehnder interferometer and spectral demultiplexer. We measured the raw heralded two-photon interference fringe visibility as 72 ± 3%. This result agrees with our model, which includes device imperfections, spectral impurity and multi-pair emissions. We identify multi-pair emissions as the main factor limiting the nonclassical interference visibility, and show a route towards achieving near unity visibility in future experiments. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.020379 |