Label-free multimodal coherent anti-Stokes Raman scattering analysis of microparticles in unconstrained microfluidics
Fast, label-free optical identification and quantification of biomolecules and other relevant biological materials in microfluidic devices and the vascular system will play a major role in liquid biopsy and related diagnoses. An optical microscope probing simultaneously non-linear coherent anti-Stok...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2018-08, Vol.57 (22), p.E32-E36 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fast, label-free optical identification and quantification of biomolecules and other relevant biological materials in microfluidic devices and the vascular system will play a major role in liquid biopsy and related diagnoses. An optical microscope probing simultaneously non-linear coherent anti-Stokes Raman scattering (CARS) and linear scattering (LS) was used to probe microparticles in aqueous solutions flowed unconstrained in microfluidic channels. Despite the optical complexity of these systems, where out-of-focus microparticles randomly impede CARS and LS, and where water CARS generates a substantial background, we demonstrate that in-focus microparticles can be individually and unambiguously detected when CARS and LS are co-analyzed. The ability to chemically discriminate microscale features in optically realistic flows supports the relevance of multimodal CARS platforms for liquid biopsy. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.57.000E32 |