H2 Oxidation Electrocatalysis Enabled by Metal‐to‐Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction

Oxidation of H2 in a fuel cell converts the chemical energy of the H−H bond into electricity. Electrocatalytic oxidation of H2 by molecular catalysts typically requires one metal to perform multiple chemical steps: bind H2, heterolytically cleave H2, and then undergo two oxidation and two deprotonat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-10, Vol.57 (41), p.13523-13527
Hauptverfasser: Chambers, Geoffrey M., Wiedner, Eric S., Bullock, R. Morris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidation of H2 in a fuel cell converts the chemical energy of the H−H bond into electricity. Electrocatalytic oxidation of H2 by molecular catalysts typically requires one metal to perform multiple chemical steps: bind H2, heterolytically cleave H2, and then undergo two oxidation and two deprotonation steps. The electrocatalytic oxidation of H2 by a cooperative system using Cp*Cr(CO)3H and [Fe(diphosphine)(CO)3]+ has now been invetigated. A key step of the proposed mechanism is a rarely observed metal‐to‐metal hydrogen atom transfer from the Cr−H complex to the Fe, forming an Fe−H complex that is deprotonated and then oxidized electrochemically. This “division of chemical labor” features Cr interacting with H2 to cleave the H−H bond, while Fe interfaces with the electrode. Neither metal is required to heterolytically cleave H2, so this system provides a very unusual example of a homolytic reaction being a key step in a molecular electrocatalytic process. A cooperative catalysis system using Fe and Cr provides a “division of labor” that enables the electrocatalytic oxidation of H2, even though neither metal is capable of heterolytic cleavage of H2.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201807510