Sedflux 2.0: An advanced process-response model that generates three-dimensional stratigraphy

Sedflux 2.0 is the newest version of the Sedflux basin-filling model. Sedflux 2.0 provides a framework within which individual process-response models of disparate time and space resolutions communicate with one another to deliver multigrain-sized sediment load across a continental margin. Version 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences 2008-10, Vol.34 (10), p.1319-1337
Hauptverfasser: Hutton, Eric W.H., Syvitski, James P.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sedflux 2.0 is the newest version of the Sedflux basin-filling model. Sedflux 2.0 provides a framework within which individual process-response models of disparate time and space resolutions communicate with one another to deliver multigrain-sized sediment load across a continental margin. Version 2.0 introduces a series of new process models, and the ability to operate in one of two modes to track the evolution of stratigraphy in either two or three dimensions. Additions to the 2D mode include the addition of models that simulate (1) erosion and deposition of sediment along a riverbed, (2) cross-shore transport due to ocean waves, and (3) turbidity currents and hyperpycnal flows. New processes in the 3D mode include (1) river channel avulsion, (2) two-dimensional diffusion due to ocean storms, and (3) two-dimensional flexure due to sediment loading. The spatial resolution of the architecture is typically 1–25 cm in the vertical and 10–100 m in the horizontal when operating in 2D mode. In 3D mode, the horizontal resolution usually extends to kilometers. In addition to fixed time steps (from days to hundreds of years), Sedflux 2.0 offers event-based time stepping as a way to conduct long-term simulations while still modeling low-frequency but high-energy events.
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2008.02.013