Remote Photoplethysmographic Assessment of the Peripheral Circulation in Critical Care Patients Recovering From Cardiac Surgery
PURPOSE:Camera-based photoplethysmography (cbPPG) remotely detects the volume pulse of cardiac ejection in the peripheral circulation. The cbPPG signal is sourced from the cutaneous microcirculation, yields a 2-dimensional intensity map, and is therefore an interesting monitoring technique. In this...
Gespeichert in:
Veröffentlicht in: | Shock (Augusta, Ga.) Ga.), 2019-08, Vol.52 (2), p.174-182 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PURPOSE:Camera-based photoplethysmography (cbPPG) remotely detects the volume pulse of cardiac ejection in the peripheral circulation. The cbPPG signal is sourced from the cutaneous microcirculation, yields a 2-dimensional intensity map, and is therefore an interesting monitoring technique. In this study, we investigated whether cbPPG is in general sufficiently sensitive to discern hemodynamic conditions.
METHODS:cbPPG recordings of 70 patients recovering from cardiac surgery were analyzed. Photoplethysmograms were processed offline and the optical pulse power (OPP) of cardiac ejection was calculated. Hemodynamic data, image intensity, and patient movements were recorded synchronously. The effects of hemodynamic parameters and measurement conditions on the patientʼs individual OPP variability and their actual OPP values were calculated in mixed-effects regression models.
RESULTS:Mean arterial pressure (MAP), pulse pressure (PP), heart rate (HR), and central venous pressure (CVP) significantly explained the individual OPP variability. PP had the highest explanatory power (19.9%). Averaged OPP significantly increased with PP and MAP (P |
---|---|
ISSN: | 1073-2322 1540-0514 |
DOI: | 10.1097/SHK.0000000000001249 |