Solving large-scale general phase retrieval problems via a sequence of convex relaxations
We present a convex relaxation-based algorithm for large-scale general phase retrieval problems. General phase retrieval problems include, e.g., the estimation of the phase of the optical field in the pupil plane based on intensity measurements of a point source recorded in the image (focal) plane....
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2018-08, Vol.35 (8), p.1410-1419 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a convex relaxation-based algorithm for large-scale general phase retrieval problems. General phase retrieval problems include, e.g., the estimation of the phase of the optical field in the pupil plane based on intensity measurements of a point source recorded in the image (focal) plane. The non-convex problem of finding the complex field that generates the correct intensity is reformulated into a rank constraint problem. The nuclear norm is used to obtain the convex relaxation of the phase retrieval problem. A new iterative method referred to as convex optimization-based phase retrieval (COPR) is presented, with each iteration consisting of solving a convex problem. In the noise-free case and for a class of phase retrieval problems, the solutions of the minimization problems converge linearly or faster towards a correct solution. Since the solutions to nuclear norm minimization problems can be computed using semidefinite programming, and this tends to be an expensive optimization in terms of scalability, we provide a fast algorithm called alternating direction method of multipliers (ADMM) that exploits the problem structure. The performance of the COPR algorithm is demonstrated in a realistic numerical simulation study, demonstrating its improvements in reliability and speed with respect to state-of-the-art methods. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.35.001410 |