Magnetic field at the inner disk edge

Our present understanding of the coronal structure of T Tauri stars is fragmentary and observations in different wavelength regimes often appear to give contradictory results. X-ray data suggest the presence of magnetic loops on a variety of scales, from compact loops of size less than a stellar rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the International Astronomical Union 2007-05, Vol.3 (S243), p.51-62
Hauptverfasser: Jardine, Moira, Gregory, Scott G., Donati, Jean-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our present understanding of the coronal structure of T Tauri stars is fragmentary and observations in different wavelength regimes often appear to give contradictory results. X-ray data suggest the presence of magnetic loops on a variety of scales, from compact loops of size less than a stellar radius, up to very large loops of up to 10 stellar radii which may connect to the disk. While some stars show a clear rotational modulation in X-rays, implying distinct bright and dark regions, many do not. This picture is complicated by the accretion process itself, which also contributes to the X-ray emission. The location of the inner edge of the accretion disk and the nature of the magnetic field there are still hotly-contested issues. Accretion indicators often suggest the presence of discrete accretion funnels. This has implications for the structure of the corona, as does the presence of an outflowing wind. All of these factors are linked to the structure of the magnetic field, which we are now beginning to unravel through Zeeman-Doppler imaging. In this review I will describe the present state of our understanding of the magnetic structure of T Tauri coronae and the impact this has during such an early evolutionary stage.
ISSN:1743-9213
1743-9221
DOI:10.1017/S1743921307009416