Evolution of flowering decisions in a stochastic, density-dependent environment
Demography is central to both ecology and evolution, and characterizing the feedback between ecology and evolution is critical for understanding organisms' life histories and how these might evolve through time. Here, we show how, by combining a range of theoretical approaches with the statisti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-07, Vol.105 (30), p.10466-10470 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Demography is central to both ecology and evolution, and characterizing the feedback between ecology and evolution is critical for understanding organisms' life histories and how these might evolve through time. Here, we show how, by combining a range of theoretical approaches with the statistical analysis of individually structured databases, accurate prediction of life history decisions is possible in natural density-regulated populations undergoing large fluctuations in demographic rates from year to year. Our predictions are remarkably accurate and statistically well defined. In addition, we show that the predicted trait values are evolutionarily and convergence stable and that protected polymorphisms are possible. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0800777105 |