Ultrasound‐assisted Synthesis of Ag‐ZnS/rGO and its Utilization in Photocatalytic Degradation of Tetracycline Under Visible Light Irradiation

Recent improvements based on heterojunction nanocomposites have opened new possibilities in photocatalysis. In this research, an ultrasound‐assisted coprecipitation method was used to fabricate silver, zinc sulfide and reduced graphene oxide (Ag‐ZnS/rGO) nanocomposite, and characterization results i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemistry and photobiology 2019-03, Vol.95 (2), p.512-521
Hauptverfasser: Kameli, Samaneh, Mehrizad, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent improvements based on heterojunction nanocomposites have opened new possibilities in photocatalysis. In this research, an ultrasound‐assisted coprecipitation method was used to fabricate silver, zinc sulfide and reduced graphene oxide (Ag‐ZnS/rGO) nanocomposite, and characterization results indicated that 3% Ag‐ZnS spherical nanoparticles are successfully embedded in rGO matrix. The potential of the Ag‐ZnS/rGO, as a visible light active photocatalyst, was assessed through optimizing degradation of Tetracycline (TC) by response surface methodology. It was found that the photocatalytic degradation of TC increased with an increase in the amount of nanocomposite and irradiation time, whereas it decreased with increasing the initial TC concentration. Under the optimal conditions (10 mg L−1 of TC, 1.25 g L−1 of Ag‐ZnS/rGO, at pH = 7, and irradiation duration 110 min), more than 90% of the TC was degraded. The study of the mechanism of the photocatalytic process disclosed that the synergistic role of surface plasmon resonance (SPR) induced by Ag nanoparticles and p‐type semiconductor feature of rGO leads to ZnS semiconductor stimulation in the visible light region. Eventually, a pseudo‐first order kinetics model was developed based on the proposed mechanism. The obtained results highlight the role of Ag‐ZnS/rGO nanophotocatalyst toward degradation of some antibiotics under visible light. Silver, zinc sulfide, and reduced graphene oxide (Ag‐ZnS/rGO) nanocomposite was synthesized through an ultrasound‐assisted co‐precipitation method and its photocatalytic efficiency was evaluated by considering the degradation of Tetracycline (TC) under visible light. The study of the mechanism of the photocatalytic process disclosed that the synergistic role of surface plasmon resonance (SPR) induced by Ag nanoparticles and p‐type semiconductor feature of rGO leads to ZnS semiconductor stimulation in the visible light region.
ISSN:0031-8655
1751-1097
DOI:10.1111/php.12998