Biotin-Modified Polylactic-co-Glycolic Acid Nanoparticles with Improved Antiproliferative Activity of 15,16-Dihydrotanshinone I in Human Cervical Cancer Cells

15,16-Dihydrotanshinone I (DI), a natural compound isolated from a traditional Asian functional food Salvia Miltiorrhiza Bunge, is known for its anticancer activity. However, poor solubility of DI limits its desirable anticancer application. Herein, polylactic-co-glycolic acid (PLGA) was functionali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2018-09, Vol.66 (35), p.9219-9230
Hauptverfasser: Luo, Jingjing, Meng, Xiaofeng, Su, Jianyu, Ma, Hang, Wang, Wen, Fang, Liming, Zheng, Huade, Qin, Yexia, Chen, Tianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:15,16-Dihydrotanshinone I (DI), a natural compound isolated from a traditional Asian functional food Salvia Miltiorrhiza Bunge, is known for its anticancer activity. However, poor solubility of DI limits its desirable anticancer application. Herein, polylactic-co-glycolic acid (PLGA) was functionalized with polyethylene glycol (PEG) and biotin to form copolymers PEG-PLGA (PPA) and biotin-PEG-PLGA (BPA). DI was encapsulated in copolymers PPA and BPA to obtain DI-PPA-NPs (NPs = nanoparticles) and DI-BPA-NPs, respectively. The particle size and its distribution, encapsulation efficiency, and in vitro releasing capacity of DI-BPA-NPs were characterized by biophysical methods. MTT assay was used to evaluate the antiproliferative activity of free DI, DI-PPA-NPs, and DI-BPA-NPs in human cervical cancer Hela cells. DI-BPA-NPs showed the highest cytotoxicity on Hela cells with an IC50 value of 4.55 ± 0.631 μM, while it was 8.20 ± 0.849 and 6.14 ± 0.312 μM for DI and DI-PPA-NPs in 72 h, respectively. The superior antiproliferative activity was supported by the fact that DI-BPA-NPs could be preferentially internalized by Hela cells, owing to their specific interaction between biotin and overexpressed biotin receptors. In addition, DI-BPA-NPs effectively inhibited Hela cell proliferation by inducing G2/M phase cycle arrest and decreasing the intracellular reactive oxygen species (ROS) level by 31.50 ± 2.29% in 5 min. In summary, DI-BPA-NPs shows improved antiproliferative activity against human cervical cancer as comparing with free DI, demonstrating its application potential in cancer therapy.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.8b02698