Regulation of the Activity in the p53 Family Depends on the Organization of the Transactivation Domain

Despite high sequence homology among the p53 family members, the regulation of their transactivation potential is based on strikingly different mechanisms. Previous studies revealed that the activity of TAp63α is regulated via an autoinhibitory mechanism that keeps inactive TAp63α in a dimeric confo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structure (London) 2018-08, Vol.26 (8), p.1091-1100.e4
Hauptverfasser: Krauskopf, Katharina, Gebel, Jakob, Kazemi, Sina, Tuppi, Marcel, Löhr, Frank, Schäfer, Birgit, Koch, Joachim, Güntert, Peter, Dötsch, Volker, Kehrloesser, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite high sequence homology among the p53 family members, the regulation of their transactivation potential is based on strikingly different mechanisms. Previous studies revealed that the activity of TAp63α is regulated via an autoinhibitory mechanism that keeps inactive TAp63α in a dimeric conformation. While all p73 isoforms are constitutive tetramers, their basal activity is much lower compared with tetrameric TAp63. We show that the dimeric state of TAp63α not only reduces DNA binding affinity, but also suppresses interaction with the acetyltransferase p300. Exchange of the transactivation domains is sufficient to transfer the regulatory characteristics between p63 and p73. Structure determination of the transactivation domains of p63 and p73 in complex with the p300 Taz2 domain further revealed that, in contrast to p53 and p73, p63 has a single transactivation domain. Sequences essential for stabilizing the closed dimer of TAp63α have evolved into a second transactivation domain in p73 and p53. [Display omitted] •TAp63α′s inhibition consists of reduction of affinity to DNA and activators, e.g., p300•TAp63 contains a single undivided transactivation domain•TAp73 interacts differently with the Taz2 domain compared with p53 and TAp63•Exchange of the transactivation domains of p63 and p73 changes their oligomeric state In this work, Krauskopf et al. provide a comprehensive analysis of the transcriptional activity of p63 and p73 and investigate their interaction with the Taz2 domain of p300. Exchange of the transactivation domains between p63 and p73 is sufficient to transfer transcriptional activity and oligomeric state between both proteins.
ISSN:0969-2126
1878-4186
DOI:10.1016/j.str.2018.05.013