Photosynthetic oxygenation for urine nitrification

Human urine accounts for only a fraction of the sewage volume, but it contains the majority of valuable nutrient load in wastewater. In this study, synthetic urine was nitrified in a closed photo-bioreactor through photosynthetic oxygenation by means of a consortium of microalgae and nitrifying bact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2018-08, Vol.78 (1-2), p.183-194
Hauptverfasser: Muys, Maarten, Coppens, Joeri, Boon, Nico, Vlaeminck, Siegfried E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human urine accounts for only a fraction of the sewage volume, but it contains the majority of valuable nutrient load in wastewater. In this study, synthetic urine was nitrified in a closed photo-bioreactor through photosynthetic oxygenation by means of a consortium of microalgae and nitrifying bacteria. In situ production of oxygen by photosynthetic organisms has the potential to reduce the energy costs linked to conventional aeration. This energy-efficient strategy results in stable urine for further nutrient recovery, while part of the nutrients are biologically recovered in the form of valuable biomass. In this study, urine was nitrified for the first time without conventional aeration at a maximum photosynthetic oxygenation rate of 160 mg O gVSS d (VSS: volatile suspended solids). A maximum volumetric nitrification rate of 67 mg N L d was achieved on 12% diluted synthetic urine. Chemical oxygen demand (COD) removal efficiencies were situated between 44% and 83% at a removal rate of 24 mg COD gVSS d . After 180 days, microscopic observations revealed that Scenedesmus sp. was the dominant microalga. Overall, photosynthetic oxygenation for urine nitrification is promising as a highly electricity efficient approach for further nutrient recovery.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2018.200