Graph structured autoencoder

In this work, we introduce the graph regularized autoencoder. We propose three variants. The first one is the unsupervised version. The second one is tailored for clustering, by incorporating subspace clustering terms into the autoencoder formulation. The third is a supervised label consistent autoe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2018-10, Vol.106, p.271-280
1. Verfasser: Majumdar, Angshul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we introduce the graph regularized autoencoder. We propose three variants. The first one is the unsupervised version. The second one is tailored for clustering, by incorporating subspace clustering terms into the autoencoder formulation. The third is a supervised label consistent autoencoder suitable for single label and multi-label classification problems. Each of these has been compared with the state-of-the-art on benchmark datasets. The problems addressed here are image denoising, clustering and classification. Our proposed methods excel of the existing techniques in all of the problems.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2018.07.016