Newtonian non-linear hydrodynamics and magnetohydrodynamics

We use covariant techniques to study the non-linear evolution of self-gravitating, non-relativistic media. The formalism is first applied to imperfect fluids, aiming at the kinematic effects of viscosity, before extended to inhomogeneous magnetized environments. The non-linear electrodynamic formula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2008-07, Vol.388 (1), p.187-196
Hauptverfasser: Spyrou, Nicolaos K., Tsagas, Christos G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use covariant techniques to study the non-linear evolution of self-gravitating, non-relativistic media. The formalism is first applied to imperfect fluids, aiming at the kinematic effects of viscosity, before extended to inhomogeneous magnetized environments. The non-linear electrodynamic formulae are derived and successively applied to electrically resistive and to highly conductive fluids. By nature, the covariant equations isolate the magnetic effects on the kinematics and the dynamics of the medium, combining mathematical transparency and physical clarity. Employing the Newtonian analogue of the relativistic 1 + 3 covariant treatment also facilitates the direct comparison with the earlier relativistic studies and helps to identify the differences in an unambiguous way. The purpose of this work is to set the framework and take a first step towards the detailed analytical study of complex non-linear systems, like non-relativistic astrophysical plasmas and collapsing protogalactic clouds.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2008.13309.x