The effect of plastic fines on the pore pressure generation characteristics of saturated sands

Pore water pressure generation during earthquake shaking initiates liquefaction and affects the shear strength, shear stiffness, deformation, and settlement characteristics of soil deposits. The effect of plastic fines (kaolinite) on pore pressure generation in saturated sands was studied through st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil dynamics and earthquake engineering (1984) 2008-05, Vol.28 (5), p.376-386
Hauptverfasser: Derakhshandi, Mehdi, Rathje, Ellen M., Hazirbaba, Kenan, Mirhosseini, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pore water pressure generation during earthquake shaking initiates liquefaction and affects the shear strength, shear stiffness, deformation, and settlement characteristics of soil deposits. The effect of plastic fines (kaolinite) on pore pressure generation in saturated sands was studied through strain-controlled cyclic triaxial tests. In addition to pore pressure generation, this experimental study also focused on evaluating the threshold shear strain for pore pressure generation and the volumetric compressibility of specimens during pore pressure dissipation. The results reveal that specimens having up to 20% plastic fines content generated larger values of pore water pressure than clean sand specimens. At 30% fines content, the excess pore water pressure decreased below that of clean sand. The threshold shear strain, which indicates the strain level above which pore pressures begin to generate, was assessed for different kaolinite–sand mixtures. The threshold shear strain was similar for 0–20% fines ( γ t∼0.006–0.008%), but increased to about 0.025% for 30% fines. The volumetric compressibility, measured after pore pressure generation, was similar for all specimens. The transition of behavior at fines contents between 20% and 30% can be attributed to a change in the soil structure from one dominated by sand grains to one dominated by fines.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2007.07.002