GHASP: an Hα kinematic survey of spiral and irregular galaxies – VI. New Hα data cubes for 108 galaxies

We present the Fabry–Perot observations obtained for a new set of 108 galaxies in the frame of the Gassendi Hα survey of SPirals (GHASP). The GHASP survey consists of 3D Hα data cubes for 203 spiral and irregular galaxies, covering a large range in morphological types and absolute magnitudes, for ki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2008-08, Vol.388 (2), p.500-550
Hauptverfasser: Epinat, B., Amram, P., Marcelin, M., Balkowski, C., Daigle, O., Hernandez, O., Chemin, L., Carignan, C., Gach, J.-L., Balard, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the Fabry–Perot observations obtained for a new set of 108 galaxies in the frame of the Gassendi Hα survey of SPirals (GHASP). The GHASP survey consists of 3D Hα data cubes for 203 spiral and irregular galaxies, covering a large range in morphological types and absolute magnitudes, for kinematics analysis. The new set of data presented here completes the survey. The GHASP sample is by now the largest sample of Fabry–Perot data ever published. The analysis of the whole GHASP sample will be done in forthcoming papers. Using adaptive binning techniques based on Voronoi tessellations, we have derived Hα data cubes from which are computed Hα maps, radial velocity fields as well as residual velocity fields, position–velocity diagrams, rotation curves and the kinematical parameters for almost all galaxies. Original improvements in the determination of the kinematical parameters, rotation curves and their uncertainties have been implemented in the reduction procedure. This new method is based on the whole 2D velocity field and on the power spectrum of the residual velocity field rather than the classical method using successive crowns in the velocity field. Among the results, we point out that morphological position angles have systematically higher uncertainties than kinematical ones, especially for galaxies with low inclination. The morphological inclination of galaxies having no robust determination of their morphological position angle cannot be constrained correctly. Galaxies with high inclination show a better agreement between their kinematical inclination and their morphological inclination computed assuming a thin disc. The consistency of the velocity amplitude of our rotation curves has been checked using the Tully–Fisher relationship. Our data are in good agreement with previous determinations found in the literature. Nevertheless, galaxies with low inclination have statistically higher velocities than expected and fast rotators are less luminous than expected.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2008.13422.x