Non-Invasive Pressure Reactivity Index Using Doppler Systolic Flow Parameters: A Pilot Analysis

The goal was to predict pressure reactivity index (PRx) using non-invasive transcranial Doppler (TCD) based indices of cerebrovascular reactivity, systolic flow index (Sx_a), and mean flow index (Mx_a). Continuous extended duration time series recordings of middle cerebral artery cerebral blood flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurotrauma 2019-03, Vol.36 (5), p.713-720
Hauptverfasser: Zeiler, Frederick A, Smielewski, Peter, Stevens, Andrew, Czosnyka, Marek, Menon, David K, Ercole, Ari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal was to predict pressure reactivity index (PRx) using non-invasive transcranial Doppler (TCD) based indices of cerebrovascular reactivity, systolic flow index (Sx_a), and mean flow index (Mx_a). Continuous extended duration time series recordings of middle cerebral artery cerebral blood flow velocity (CBFV) were obtained using robotic TCD in parallel with direct intracranial pressure (ICP). PRx, Sx_a, and Mx_a were derived from high frequency archived signals. Using time-series techniques, autoregressive integrative moving average (ARIMA) structure of PRx was determined and embedded in the following linear mixed effects (LME) models of PRx: PRx ∼ Sx_a and PRx ∼ Sx_a + Mx_a. Using 80% of the recorded patient data, the LME models were created and trained. Model superiority was assessed via Akaike information criterion (AIC), Bayesian information criterion (BIC), and log-likelihood (LL). The superior two models were then used to predict PRx using the remaining 20% of the signal data. Predicted and observed PRx were compared via Pearson correlation, linear models, and Bland-Altman (BA) analysis. Ten patients had 3-4 h of continuous uninterrupted ICP and TCD data and were used for this pilot analysis. Optimal ARIMA structure for PRx was determined to be (2,0,2), and this was embedded in all LME models. The top two LME models of PRx were determined to be: PRx ∼ Sx_a and PRx ∼ Sx_a + Mx_a. Estimated and observed PRx values from both models were strongly correlated (r > 0.9; p 
ISSN:0897-7151
1557-9042
DOI:10.1089/neu.2018.5987