Stability, Cellular Uptake, and in Vivo Tracking of Zwitterion Modified Graphene Oxide as a Drug Carrier

In this paper, a novel kind of zwitterion modified graphene oxide (GO) for promoting stability and reducing aggregation of GO as a drug carrier was proposed and demonstrated. Specifically, the GO was functionalized with a kind of zwitterion based silane, 3-(dimethyl­(3-(trimeth­oxysilyl)­propyl)-amm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-02, Vol.35 (5), p.1495-1502
Hauptverfasser: Zhang, Jing, Chen, Liqun, Chen, Jiada, Zhang, Quan, Feng, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel kind of zwitterion modified graphene oxide (GO) for promoting stability and reducing aggregation of GO as a drug carrier was proposed and demonstrated. Specifically, the GO was functionalized with a kind of zwitterion based silane, 3-(dimethyl­(3-(trimeth­oxysilyl)­propyl)-ammonio)­propane-1-sulfonate (SBS). After zwitterion modification, the SBS functionalized GO (GO-SB) shows significantly enhanced stability in both serum-free and serum-containing solution, especially after loading doxorubicin hydrochloride (DOX). According to drug release profiles, the drug-loaded GO-SB exhibits thermosensitive and sustained release behavior. Meanwhile, in vitro studies show that the DOX loaded GO-SB could be easily internalized by HepG2 cells and exhibit obvious cytotoxicity on the cells. And, in vivo studies demonstrate that the GO-SB drug carrier is capable of being taken by the larvae of zebrafish and can be eliminated from the body within several days.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.8b01995