Imprinting Directionality into Proton Transfer Reactions of an Achiral Molecule
Directionality is key for the functionality of molecular machines, which is often achieved by built-in structural chiralities. Here, we present a scanning tunneling microscopy study of achiral H2Pc and HPc molecules that acquire chirality by adsorption onto a Ag(100) surface. The adsorption-geometry...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-08, Vol.12 (8), p.8733-8738 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Directionality is key for the functionality of molecular machines, which is often achieved by built-in structural chiralities. Here, we present a scanning tunneling microscopy study of achiral H2Pc and HPc molecules that acquire chirality by adsorption onto a Ag(100) surface. The adsorption-geometry-induced chirality is caused by a −29° (+29°) rotation of the molecules with respect to the [011] substrate direction, resulting in tautomerization processes that preferentially occur in a clockwise (counterclockwise) direction. The directionality is found to be independent of the particular energy and location of charge carrier injection. In contrast to built-in structural chiralities that are fixed by the molecular structure, the direction of proton motion in HPc on Ag(100) can be inverted by a rotation of the molecule on the substrate. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.8b04868 |