Notch signaling pathway suppresses CD8+ T cells activity in patients with lung adenocarcinoma

Evolution and progression of cancer always leads to CD8+ T cells dysfunction/exhaustion. Controversy remains as to the role of Notch signaling pathway in CD8+ T cells regulation in tumorigenesis. Thus, the aim of this study was to investigate the immunomodulatory activity of Notch signaling pathway...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International immunopharmacology 2018-10, Vol.63, p.129-136
Hauptverfasser: Li, Shuo, Wang, Zhe, Li, Xin-Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evolution and progression of cancer always leads to CD8+ T cells dysfunction/exhaustion. Controversy remains as to the role of Notch signaling pathway in CD8+ T cells regulation in tumorigenesis. Thus, the aim of this study was to investigate the immunomodulatory activity of Notch signaling pathway to peripheral and lung-resident CD8+ T cells in patients with lung adenocarcinoma. Forty-eight lung adenocarcinoma patients and twenty healthy individuals were enrolled in the current study, and CD8+ T cells were purified from both peripheral bloods and bronchoalveolar lavage fluids. Notch receptor mRNA expression was semi-quantified by real-time PCR. Cytolytic and noncytolytic activity of CD8+ T cells evaluated in direct and indirect contact co-culture with A549 cells in response to Notch signaling inhibition by measuring of lactate dehydrogenase release and cytokines production. Expression of Fas ligand (FasL), perforin, and granzyme B were also assessed by flow cytometry. Notch2 mRNA expression was elevated in both peripheral and lung-resident CD8+ T cells in lung adenocarcinoma patients, however, did not correlated with tumor stages or epidermal growth factor receptor mutation. Peripheral CD8+ T cells from healthy individuals exhibited stronger cytotoxicity in direct contact co-culture system, which was not influenced by Notch signaling inhibition. Moreover, suppression of Notch signaling augmented cytotoxicity of peripheral and lung-resident CD8+ T cells from lung adenocarcinoma patients in direct contact co-culture system, and promoted interferon-γ production in both systems. This process was accompanied by increased expression of FasL and perforin within CD8+ T cells. The current data revealed a potential immunosuppressive property of Notch signaling pathway to CD8+ T cells probably via inhibition of FasL and perforin in lung adenocarcinoma patients. •Notch2 was highly expressed in CD8+ T cells in lung adenocarcinoma patients.•CD8+ T cells was dysfunctional in lung adenocarcinoma patients.•Notch signaling inhibited cytolytic and noncytolytic function of CD8+ T cells.•Notch signaling suppressed FasL and perforin expression in CD8+ T cells.
ISSN:1567-5769
1878-1705
DOI:10.1016/j.intimp.2018.07.033