Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem

Pollination is known to be sensitive to environmental change but we lack direct estimates of how quantity and quality of pollen transferred between plant species shifts along disturbance gradients. This limits our understanding of how species compositional change impacts pollen receipt per species a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2019-01, Vol.221 (1), p.142-154
Hauptverfasser: Johnson, Anna L., Ashman, Tia‐Lynn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pollination is known to be sensitive to environmental change but we lack direct estimates of how quantity and quality of pollen transferred between plant species shifts along disturbance gradients. This limits our understanding of how species compositional change impacts pollen receipt per species and structure of pollen transfer networks. We constructed pollen transfer networks along a plant invasion gradient in the Hawaiian dry tropical forest ecosystem. Flowers and stigmas were collected from both native and introduced plants, pollen was identified and enumerated and floral traits were measured. We also characterized pollen loads carried by individuals of the dominant invasive pollinator, Apis mellifera. Species flowering in native-dominated sites were more tightly connected by pollen transfer than those in heavily invaded sites. Compositional turnover in the pollen loads of A. mellifera was correlated (70%) with turnover in the composition of pollen transfer networks. Floral traits predicted species roles within pollen transfer networks, but many of these differed qualitatively depending on whether plants were native or introduced. Our work indicates that pollen transfer networks change with invasion. Floral morphology and foraging behaviour of the introduced super-generalist pollinator are implicated as key in determining the roles introduced species play within native pollen transfer networks.
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.15366