Deletion of interferon-regulatory factor-1 results in cognitive impairment
Interferon-regulatory factor (IRF)-1-dependent genes in neurons play a role in ischemic neuronal death; however, the roles of IRF-1 in dementia are not well investigated. Therefore, we assessed the effect of IRF-1 on cognitive function using a vascular cognitive impairment mouse model created by chr...
Gespeichert in:
Veröffentlicht in: | Hypertension research 2018-10, Vol.41 (10), p.809-816 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interferon-regulatory factor (IRF)-1-dependent genes in neurons play a role in ischemic neuronal death; however, the roles of IRF-1 in dementia are not well investigated. Therefore, we assessed the effect of IRF-1 on cognitive function using a vascular cognitive impairment mouse model created by chronic cerebral hypoperfusion. Male 10-week-old C57BL/6 (wild-type; WT) and IRF-1-knockout (IRF-1KO) mice were used in this study. A chronic cerebral hypoperfusion mouse model was generated by bilateral common carotid artery stenosis (BCAS) treatment. After 6 weeks of BCAS, the mice were subjected to the Morris water maze test five times a day for 5 days. In the Morris water maze task, escape latency was significantly prolonged in sham-operated IRF-1KO mice compared with sham-operated WT mice. However, BCAS treatment cancelled such difference in spatial learning between WT and IRF-1KO mice. BCAS treatment decreased CBF, but no significant difference was observed between the two strains after BCAS. Sham-operated IRF-1KO mice showed a decrease in mRNA expression of caspase-1 and an increase in IRF-2 expression in the hippocampus. Expression of angiotensin II type 2 (AT
) receptor, which induces better cognitive function, is regulated by IRF-1; however, no obvious difference in AT
receptor expression was observed between the two strains even after BCAS. These results suggest that IRF-1 has a protective effect on cognitive decline in a normal condition; however, there was no obvious effect on cognition after chronic cerebral hypoperfusion treatment. |
---|---|
ISSN: | 0916-9636 1348-4214 |
DOI: | 10.1038/s41440-018-0080-y |