Redox Potential Measurements in Red Blood Cell Packets Using Nanoporous Gold Electrodes
The redox potential of packed red blood cells (RBCs) was measured over a 56-day storage period using a newly developed potentiometric methodology consisting of a nanoporous gold electrode and a silver chloride coated silver reference electrode. Both milliliter- and microliter-sized volumes were sepa...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2018-08, Vol.3 (8), p.1601-1608 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The redox potential of packed red blood cells (RBCs) was measured over a 56-day storage period using a newly developed potentiometric methodology consisting of a nanoporous gold electrode and a silver chloride coated silver reference electrode. Both milliliter- and microliter-sized volumes were separately evaluated. The addition of Vitamin C (VitC) in differing doses to the packed RBCs was also assessed as a means to improve redox stability and prolong storage duration. For RBCs containing only saline, the open-circuit potential (OCP) was ∼ −80 mV vs Ag/AgCl and drifted slightly with time; greater differences were also noted between different electrodes. The addition of exogenous VitC to the RBC shifts the OCP to more negative values, stabilizes the redox potential, and improves reproducibly between different electrodes due to the poising of blood. Over the 56-day storage period, the redox potential of the RBCs increased slightly, which can be attributed to change in pH and/or increasing oxidative stress during storage. Cyclic voltammograms acquired after open-circuit potential measurements showed a characteristic peak attributed to the oxidation of VitC. This peak decreased during storage with a time constant of 20.8 days. Likewise, the intercellular concentration of VitC increased with a time constant of 20.2 days as measured using a fluorescence assay. Collectively, these results demonstrate the usefulness of electrochemical measurements in the study of stored blood products. |
---|---|
ISSN: | 2379-3694 2379-3694 |
DOI: | 10.1021/acssensors.8b00498 |