Gross N mineralization rates after application of composted grape marc to soil

Grape marc is a common waste product of the wine production industry. When partially composted and applied to soil it may contain enough N to affect vine growth and hence wine quality. Yet little is known about the quantity and timing of N release from composted grape marc. A laboratory incubation w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry 2005-07, Vol.37 (7), p.1397-1400
Hauptverfasser: Flavel, T.C., Murphy, D.V., Lalor, B.M., Fillery, I.R.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grape marc is a common waste product of the wine production industry. When partially composted and applied to soil it may contain enough N to affect vine growth and hence wine quality. Yet little is known about the quantity and timing of N release from composted grape marc. A laboratory incubation was conducted where composted grape marc amended and non-amended soils were periodically sampled over 148 days at 15 °C for gross N mineralization rates, C mineralization and microbial biomass-C. Gross N mineralization rates were determined by 15N pool dilution using both analytical equations and the numerical model FLUAZ (Mary, B., Recous, S., Robin, D., 1998. A model for calculating nitrogen fluxes in soil using 15N tracing. Soil Biology & Biochemistry 30, 1963–1979.). Both analytical and FLUAZ determined gross N mineralization rates were in close agreement in the control soil. However, in composted grape marc amended soils there was a discrepancy between the two solutions. Findings indicate that composted grape marc caused a net immobilization of N for the first 50-days of incubation, after which enough N was released to require consideration in fertilizer-N strategies.
ISSN:0038-0717
1879-3428
DOI:10.1016/j.soilbio.2004.12.003