Dual-electrode motion artifact cancellation for mobile electroencephalography
Objective. Our purpose was to evaluate the ability of a dual electrode approach to remove motion artifact from electroencephalography (EEG) measurements. Approach. We used a phantom human head model and robotic motion platform to induce motion while collecting scalp EEG. We assembled a dual electrod...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2018-10, Vol.15 (5), p.056024-056024 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective. Our purpose was to evaluate the ability of a dual electrode approach to remove motion artifact from electroencephalography (EEG) measurements. Approach. We used a phantom human head model and robotic motion platform to induce motion while collecting scalp EEG. We assembled a dual electrode array capturing (a) artificial neural signals plus noise from scalp EEG electrodes, and (b) electrically isolated motion artifact noise. We recorded artificial neural signals broadcast from antennae in the phantom head during continuous vertical sinusoidal movements (stationary, 1.00, 1.25, 1.50, 1.75, 2.00 Hz movement frequencies). We evaluated signal quality using signal-to-noise ratio (SNR), cross-correlation, and root mean square error (RMSE) between the ground truth broadcast signals and the recovered EEG signals. Main results. Signal quality was restored following noise cancellation when compared to single electrode EEG measurements collected with no phantom head motion. Significance. We achieved substantial motion artifact attenuation using secondary electrodes for noise cancellation. These methods can be applied to studying electrocortical signals during human locomotion to improve real-world neuroimaging using EEG. |
---|---|
ISSN: | 1741-2560 1741-2552 |
DOI: | 10.1088/1741-2552/aad7d7 |