Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain

The development of simultaneous saccharification and fermentation of starch to ethanol (SSFSE) by genetically modified microbial strains has been studied intensively [M.M. Altintas, B. Kirdar, Z.Ï. Önsan, K.Ö. Ülgen, Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical engineering journal 2006-03, Vol.28 (3), p.243-255
Hauptverfasser: Kroumov, Alexander Dimitrov, Módenes, Aparecido Nivaldo, Tait, Maicon C. de Araujo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of simultaneous saccharification and fermentation of starch to ethanol (SSFSE) by genetically modified microbial strains has been studied intensively [M.M. Altintas, B. Kirdar, Z.Ï. Önsan, K.Ö. Ülgen, Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein, Process Biochem. 37 (2002) 1439–1445; G. Birol, Z.Ï. Önsan, B. Kirdar, S.G. Oliver, Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch, Enzyme Microb. Technol. 22 (1998) 672–677; F. Kobayashi, Y. Nakamura, Effect of repressor gene on stability of bioprocess with continuous conversion of starch into ethanol using recombinant yeast, Biochem. Eng. J. 18 (2004) 133–141; F. Kobayashi, Y. Nakamura, Mathematical model of direct ethanol production from starch in immobilized recombinant yeast culture, Biochem. Eng. J. 21 (2004) 93–101; M.M. Altintas, K.Ö. Ülgen, B. Kirdar, Z.Ï. Önsan, S.G. Oliver, Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors, Enzyme Microb. Technol. 31 (2002) 640–647; K.Ö. Ülgen, B. Saygili, Z.Ï. Önsan, B. Kirdar, Bioconversion of starch into ethanol by a recombinant Saccharomyces cerevisiae strain YPG-AB, Process Biochem. 37 (2002) 1157–1168]. Saccharomyces cerevisiae YPB-G strain secretes a bifunctional fusion protein containing enzymatic activity of the B. subtilis alpha-amylase and of the Aspergillus awamori glucoamylase [M.M. Altintas, B. Kirdar, Z.Ï. Önsan, K.Ö. Ülgen, Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein, Process Biochem. 37 (2002) 1439–1445], and therefore is distinguished in relation to SSFSE step. In this work we have used the experimental data, presented in the paper [M.M. Altintas, B. Kirdar, Z.Ï. Önsan, K.Ö. Ülgen, Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein, Process Biochem. 37 (2002) 1439–1445] to develop two-hierarchic-level unstructured mathematical model describing kinetics of direct bioconversion of starch to ethanol. The first level has modeled enzymatic hydrolysis of starch to glucose by bifunctional protein and the second level includes utilization and bioconversion of glucose to ethanol by yeasts. The second level has unified the enzymatic
ISSN:1369-703X
1873-295X
DOI:10.1016/j.bej.2005.11.008