Biodiversity and trophic structure of soil nematode communities are altered following woody plant invasion of grassland

Woody plant encroachment is an important land cover change in dryland ecosystems throughout the world, and frequently alters above and belowground primary productivity, hydrology, and soil microbial biomass and activity. However, there is little known regarding the impact of this geographically wide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry 2009-09, Vol.41 (9), p.1943-1950
Hauptverfasser: Biederman, Lori A., Boutton, Thomas W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Woody plant encroachment is an important land cover change in dryland ecosystems throughout the world, and frequently alters above and belowground primary productivity, hydrology, and soil microbial biomass and activity. However, there is little known regarding the impact of this geographically widespread vegetation change on the biodiversity and trophic structure of soil fauna. Nematodes represent a major component of the soil microfauna whose community composition and trophic structure could be strongly influenced by the changes in ecosystem structure and function that accompany woody encroachment. Our purpose was to characterize nematode community composition and trophic structure along a grassland to woodland chronosequence in the Rio Grande Plains of southern Texas. Research was conducted at the La Copita Research Area where woody encroachment has been documented previously. Soil cores (0–10 cm) were collected in fall 2006 and spring 2007 from remnant grasslands and woody plant stands ranging in age from 15 to 86 years, and nematodes were extracted by sugar centrifugation. Neither nematode densities (3200–13,800 individuals kg −1 soil) nor family richness (15–19 families 100 g −1 soil) were altered by woody encroachment. However, family evenness decreased dramatically in woody stands >30 years old. This change in evenness corresponded to modifications in the trophic structure of nematode communities following grassland to woodland conversion. Although root biomass was 2–5× greater in wooded areas, root-parasitic nematodes decreased from 40% of all nematodes in grasslands to
ISSN:0038-0717
1879-3428
DOI:10.1016/j.soilbio.2009.06.019