Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system
Recombinant adeno-associated virus (rAAV) has become the vector of choice for the development of novel human gene therapies. High-yield manufacturing of high-quality vectors can be achieved using the baculovirus expression vector system. However, efficient production of rAAV in this insect cell-base...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2018-09, Vol.25 (6), p.415-424 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recombinant adeno-associated virus (rAAV) has become the vector of choice for the development of novel human gene therapies. High-yield manufacturing of high-quality vectors can be achieved using the baculovirus expression vector system. However, efficient production of rAAV in this insect cell-based system requires a genetic redesign of the viral protein 1 (VP1) operon. In this study, we generated a library of rationally designed rAAV serotype 5 variants with modulations in the translation-initiation region of VP1 and investigated the potency of the resulting vectors. We found that the initiation strength at the VP1 translational start had downstream effects on the VP2/VP3 ratio. Excessive incorporation of VP3 into a vector type decreased potency, even when the VP1/VP2 ratio was in balance. Finally, we successfully generated a potent rAAV vector based on serotype 5 with a balanced VP1/VP2/VP3 stoichiometry. |
---|---|
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/s41434-018-0034-7 |