Interactive effects of sublethal predation and body size on siphon production of the bivalve Nuttallia olivacea

This paper is intended to reveal effects of siphon cropping on siphon production of a tellinacean bivalve Nuttallia olivacea, an important prey for juvenile stone flounder. We carried out a two-way field experiment in which bivalves of three treatments (3-times siphon removal, 1-time removal, no rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental marine biology and ecology 2007-02, Vol.341 (1), p.102-109
Hauptverfasser: Tomiyama, Takeshi, Omori, Michio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is intended to reveal effects of siphon cropping on siphon production of a tellinacean bivalve Nuttallia olivacea, an important prey for juvenile stone flounder. We carried out a two-way field experiment in which bivalves of three treatments (3-times siphon removal, 1-time removal, no removal) and four size classes (9–50 mm shell length) were caged and placed in the field for 3 mo. Growth of repeatedly-removed bivalves was inhibited, indicating reduced siphon growth (natural increase of siphon size according to somatic growth). However, siphon production of removed bivalves was larger than non-removed bivalves, possibly because of siphon regeneration. Juveniles ( N. olivacea < 20 mm shell length) showed high growth performance. Their siphon growth was greater than their siphon regeneration. In all bivalves except juveniles, siphon regeneration was greater than siphon growth and engendered high siphon production. Siphon growth was dependent on bivalve size and was only slightly reduced by siphon loss, but siphon regeneration seemed to be dependent mostly on the extent of siphon loss. Greater siphon removal enhanced larger siphon production. These results indicate that intensive siphon cropping by juvenile stone flounder induces high siphon production without serious impact on N. olivacea.
ISSN:0022-0981
1879-1697
DOI:10.1016/j.jembe.2006.09.023