Performance analysis of a new type desalination unit of heat pump with humidification and dehumidification
Desalination with humidification and dehumidification process is deemed as an efficient and promising means of utilizing the condenser and evaporator of heat pump to produce freshwater from seawater. This paper presents a new type desalination unit driven by mechanical vapor compression pump which w...
Gespeichert in:
Veröffentlicht in: | Desalination 2008-03, Vol.220 (1-3), p.531-537 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Desalination with humidification and dehumidification process is deemed as an efficient and promising means of utilizing the condenser and evaporator of heat pump to produce freshwater from seawater. This paper presents a new type desalination unit driven by mechanical vapor compression pump which was designed and fabricated by the Institute of Air-Conditioning & Solar Energy of the Northwestern Polytechnical University. The unit utilized the heat from condenser and the cold from evaporator of heat pump adequately, and reclaimed most latent heat. The air, firstly, was humidified in the humidifier with the alveolate structure, and then was cooled in the precondenser and the evaporative condenser to produce freshwater. A mathematical model of the unit is presented, in which the hydrokinetics method was used to study the flow and the heat and mass transfer inside the alveolate humidifier. The effects of some of the operation such as flow rates, temperatures of cooling water and air, and etc., were studied in detail. The comparison between the numerical and experimental results was accepted. The desalination unit that is considered in the study produces freshwater 60 kg/day with the less electric power that is 500W and is proven to be an efficient desalination device to obtain freshwater. |
---|---|
ISSN: | 0011-9164 1873-4464 |
DOI: | 10.1016/j.desal.2007.01.053 |