Schizosaccharomyces pombe Rad22A and Rad22B have similar biochemical properties and form multimeric structures
The Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination. In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange. Schizosaccharomyces pombe has two Rad52 homologues, R...
Gespeichert in:
Veröffentlicht in: | Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 2007-02, Vol.615 (1), p.143-152 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The
Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination.
In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange.
Schizosaccharomyces pombe has two Rad52 homologues, Rad22A and Rad22B. Whereas
rad22A deficient strains exhibit severe defects in repair and recombination,
rad22B mutants have a much less severe phenotype. To better understand the role of Rad22A and Rad22B in double-strand break repair, both proteins were purified to near homogeneity. Using gel retardation and filter binding assays, binding of Rad22A and Rad22B to short single-stranded DNAs was demonstrated. Binding of Rad22A to double-stranded oligonucleotides or linearized plasmid molecules containing blunt ends or short single-stranded overhangs could not be detected. Rad22B also does not bind efficiently to short duplex oligonucleotides but binds readily to DNA fragments containing 3′-overhangs. Rad22A as well as Rad22B efficiently promote annealing of complementary single-stranded DNAs. In the presence of Rad22A annealing of complementary DNAs is almost 90%. Whereas in reactions containing Rad22B the maximum level of annealing is 60%, most likely due to inhibition of the reaction by duplex DNA. Gel-filtration experiments and electron microscopic analyses indicate self-association of Rad22A and Rad22B and the formation of multimeric structures as has been observed for Rad52 in yeast and man. |
---|---|
ISSN: | 0027-5107 1386-1964 1873-135X 0027-5107 |
DOI: | 10.1016/j.mrfmmm.2006.11.032 |