Catalysis-Based Total Syntheses of Pateamine A and DMDA-Pat A

The marine natural product pateamine A (1) and its somewhat simplified designer analogue DMDA-Pat A (2) (DMDA = desmethyl-desamino) are potently cytotoxic compounds; most notably, 2 had previously been found to exhibit a promising differential in vivo activity in xenograft melanoma models, even thou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-08, Vol.140 (33), p.10514-10523
Hauptverfasser: Zhuo, Chun-Xiang, Fürstner, Alois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The marine natural product pateamine A (1) and its somewhat simplified designer analogue DMDA-Pat A (2) (DMDA = desmethyl-desamino) are potently cytotoxic compounds; most notably, 2 had previously been found to exhibit a promising differential in vivo activity in xenograft melanoma models, even though the ubiquitous eukaryotic initiation factor 4A (eIF4A) constitutes its primary biological target. In addition, 1 had also been identified as a possible lead in the quest for medication against cachexia, an often lethal muscle wasting syndrome affecting many immunocompromised or cancer patients. The short supply of these macrodiolides, however, rendered a more detailed biological assessment difficult. Therefore, a new synthetic approach to 1 and 2 has been devised, which centers on an unorthodox strategy for the formation of the highly isomerization-prone but essential Z,E-configured dienoate substructure embedded into the macrocyclic core. This motif was encoded in the form of a 2-pyrone ring and unveiled only immediately before macrocyclization by an unconventional iron-catalyzed ring opening/cross-coupling reaction, in which the enol ester entity of the pyrone gains the role of a leaving group. Since the required precursor was readily available by gold catalysis, this strategy rendered the overall sequence short, robust, and scalable. A surprisingly easy protecting group management together with a much improved end game for the formation of the trienyl side chain via a modern Stille coupling protocol also helped to make the chosen route practical. Change of a single building block allowed the synthesis to be redirected from the natural lead compound 1 toward its almost equipotent analogue 2. Isolation and reactivity profiling of pyrone tricarbonyliron complexes provide mechanistic information as well as insights into the likely origins of the observed chemoselectivity.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.8b05094