Efficient immobilization of lactate dehydrogenase in biocomposites of double-walled carbon nanotube-doped alginate gel
An efficient carrier, double-walled carbon nanotube-doped alginate gel (DWCNT-ALG), was researched for lactate dehydrogenase (LDH, EC 1.1.1.27) immobilization in this study. LDH was pre-adsorbed on DWCNTs and then they were encapsulated in the ALG matrices followed by Ca 2+ cross-linking to form LDH...
Gespeichert in:
Veröffentlicht in: | Enzyme and microbial technology 2008-02, Vol.42 (3), p.235-241 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An efficient carrier, double-walled carbon nanotube-doped alginate gel (DWCNT-ALG), was researched for lactate dehydrogenase (LDH, EC 1.1.1.27) immobilization in this study. LDH was pre-adsorbed on DWCNTs and then they were encapsulated in the ALG matrices followed by Ca
2+ cross-linking to form LDH-DWCNT-ALG biocomposites. Scanning and transmission electron microscope images were used to characterize the LDH-DWCNT-ALG biocomposites and the DWCNTs before and after being adsorbed by LDH. LDH leakage from LDH-DWCNT-ALG biocomposites was remarkably reduced about 61.7% compared with LDH-ALG biocomposites. The results of the optimum pH and temperature of the reaction catalyzed by immobilized LDH showed that higher activity was obtained by using LDH-DWCNT-ALG biocomposites. Operational and storage stabilities of immobilized LDH had been greatly improved after being immobilized in LDH-DWCNT-ALG hybrid biocomposites. This work showed both the biocompatibility of the organic component and the higher surface energy of nanotubes in enzyme immobilization. |
---|---|
ISSN: | 0141-0229 1879-0909 |
DOI: | 10.1016/j.enzmictec.2007.09.014 |