Neuromuscular Performance and Hormonal Profile During Military Training and Subsequent Recovery Period

ABSTRACT Introduction Military training loads may induce different physiological responses in garrison and field training and only a little is known about how short-time recovery, lasting a few days, affects neuromuscular fitness and hormonal profile. This study aimed to investigate the effects of g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Military medicine 2019-03, Vol.184 (3-4), p.e113-e119
Hauptverfasser: Salonen, Mika, Huovinen, Jukka, Kyröläinen, Heikki, Piirainen, Jarmo M, Vaara, Jani P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Introduction Military training loads may induce different physiological responses in garrison and field training and only a little is known about how short-time recovery, lasting a few days, affects neuromuscular fitness and hormonal profile. This study aimed to investigate the effects of garrison and field military service on neuromuscular performance and hormonal profile and to evaluate the effects of a 3-day recovery on those factors. Methods Twenty healthy male soldiers (20 ± 1 years) participated in the study, which consisted of 4 days of garrison training [days (D) 1–4] and 7 days of military field training (Days 5–12) followed by a 3-day recovery period (Day 15). Serum hormone concentrations [testosterone (TES), cortisol (COR), sex-hormone binding globulin (SHBG), free thyroxine (T4)] were assessed at D1, D5, D8–12, and D15. Handgrip strength was measured in 10 participants at D1, D5, D8, D12, and D15. Maximal isometric force, electromyography, and rate of force development (RFD) of the knee extensors and arm flexors were also measured at D5, D12, and D15. Results The maximal force of both the arm flexors and knee extensors was not affected by the garrison or field training, whereas the RFD of the knee extensors was decreased during the field training (D5: 383 ± 130 vs. D12: 321 ± 120 N/s, p < 0.05). In addition, handgrip strength was mostly no affected, although a significant difference was observed between D8 and D12 (531 ± 53 vs. 507 ± 43 N, p < 0.05) during the field training. TES decreased already during the garrison training (D1: 18.2 ± 3.9 vs. D5: 16.2 ± 4.0 nmol/L, p < 0.05) and decreased further during the field training compared to baseline (D8: 10.2 ± 3.6 - D11: 11.4 ± 5.4 nmol/L, p < 0.05) exceeding the lowest concentration in the end of the field training (D12: 7.1 ± 4.1 nmol/L, p < 0.05). Similar changes were observed in free TES (D1: 72.2 ± 31.4 vs. D12: 35.1 ± 21.5 nmol/L, p < 0.001). The TES concentration recovered back to the baseline level and free TES increased after the recovery period compared with the baseline values (D15: 19.9 ± 5.3 nmol/L, D15: 99.7 ± 41.1 nmol/L, respectively). No changes were observed in the COR or SHBG concentrations during the garrison period. COR was decreased in the end of the field training (D12: 388 ± 109 nmol/L) compared with baseline (D1: 536 ± 113 nmol/L) (p < 0.05–0.001) but recovered back to the baseline levels after the recovery period (D15: 495 ± 58 nmol/L), whereas SHBG linearly incr
ISSN:0026-4075
1930-613X
DOI:10.1093/milmed/usy176