Nitrogen and carbon mineralization of surface-applied and incorporated winter wheat and peanut residues

Laboratory incubation experiments were conducted to study the C and N mineralization dynamics of crop residues (fine roots and straw) of the two main crops (winter wheat and peanut) in the Chinese Loess Plateau under different ways of incorporation. The C mineralization patterns of the soil amended...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology and fertility of soils 2008-03, Vol.44 (4), p.661-665
Hauptverfasser: Jin, Ke, Sleutel, Steven, De Neve, Stefaan, Gabriels, Donald, Cai, Dianxiong, Jin, Jiyun, Hofman, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laboratory incubation experiments were conducted to study the C and N mineralization dynamics of crop residues (fine roots and straw) of the two main crops (winter wheat and peanut) in the Chinese Loess Plateau under different ways of incorporation. The C mineralization patterns of the soil amended with winter wheat residues differed greatly, and the highest C mineralization was observed in the treatment with winter wheat straw incorporated (39% of the total added C mineralized). The way of straw placement had only a minor effect on the pattern of C mineralization for peanut. Generally, winter wheat residues showed a stronger immobilization than peanut residues during the incubation period, without any net N release. Winter wheat straw incorporated showed the strongest N immobilization with 35 mg kg-¹ (equivalent to 27% of added N) immobilized at the eighth week. This study indicated that retaining crop residues at the soil surface in the dry land soils of the Chinese Loess Plateau is beneficial for C sequestration. It also showed that N immobilization occurs only during a limited period of time, sufficient to prevent part of the mineral N pool from leaching, and that net N mineralization can be expected during the subsequent cropping season, thus enhancing synchronization of N supply and demand.
ISSN:0178-2762
1432-0789
DOI:10.1007/s00374-008-0267-5