Drug-induced oxidative stress in rat liver from a toxicogenomics perspective

Macrophage activators (MA), peroxisome proliferators (PP), and oxidative stressors/reactive metabolites (OS/RM) all produce oxidative stress and hepatotoxicity in rats. However, these three classes of hepatotoxicants give three distinct gene transcriptional profiles on cDNA microarrays, an indicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2005-09, Vol.207 (2), p.171-178
Hauptverfasser: McMillian, Michael, Nie, Alex, Parker, J. Brandon, Leone, Angelique, Kemmerer, Michael, Bryant, Stewart, Herlich, Judy, Yieh, Lynn, Bittner, Anton, Liu, Xuejun, Wan, Jackson, Johnson, Mark D., Lord, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macrophage activators (MA), peroxisome proliferators (PP), and oxidative stressors/reactive metabolites (OS/RM) all produce oxidative stress and hepatotoxicity in rats. However, these three classes of hepatotoxicants give three distinct gene transcriptional profiles on cDNA microarrays, an indication that rat hepatocytes respond/adapt quite differently to these three classes of oxidative stressors. The differential gene responses largely reflect differential activation of transcription factors: MA activate Stat-3 and NFkB, PP activate PPARa, and OS/RM activate Nrf2. We have used gene signature profiles for each of these three classes of hepatotoxicants to categorize over 100 paradigm (and 50+ in-house proprietary) compounds as to their oxidative stress potential in rat liver. In addition to a role for microarrays in predictive toxicology, analyses of small subsets of these signature profiles, genes within a specific pathway, or even single genes often provide important insights into possible mechanisms involved in the toxicities of these compounds.
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2005.02.031