Inhibition of Smad7, a negative regulator of TGF-beta signaling, suppresses autoimmune encephalomyelitis
Abstract We studied the role of the Transforming growth factor (TGF)-β signaling antagonist Smad7 in autoimmune central nervous system (CNS) inflammation by using specific antisense oligonucleotides (Smad7-as). Elevated Smad7 protein expression was found in the spinal cord of SJL/J mice and DA rats...
Gespeichert in:
Veröffentlicht in: | Journal of neuroimmunology 2007-07, Vol.187 (1), p.61-73 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract We studied the role of the Transforming growth factor (TGF)-β signaling antagonist Smad7 in autoimmune central nervous system (CNS) inflammation by using specific antisense oligonucleotides (Smad7-as). Elevated Smad7 protein expression was found in the spinal cord of SJL/J mice and DA rats with experimental autoimmune encephalomyelitis (EAE) and in effector T cells upon antigen stimulation. Smad7-as specifically decreased Smad7 mRNA and protein in cell lines and in ex-vivo -treated primary mouse lymph node cells (LNC). LNC exposed to Smad7-as during secondary activation showed reduced proliferation and encephalitogenicity. After systemic administration, Smad7-as ameliorated clinical signs of active and adoptively transferred EAE, diminished CNS inflammation, and reduced Smad7 protein levels in the brain. Smad7-as was found to be incorporated by peritoneal macrophages as well as by cells of the liver, kidneys, and peripheral lymph nodes. Importantly, Smad7-as treatment was not toxic and did not increase extracellular matrix formation. Smad7 inhibition thus represents a novel systemic treatment strategy for autoimmune CNS inflammation, targeting TGF-β signaling without TGF-β-associated toxicity. |
---|---|
ISSN: | 0165-5728 1872-8421 |
DOI: | 10.1016/j.jneuroim.2007.04.014 |