Integral assessment of estrogenic potentials in sediment-associated samples

Background, aim, and scope The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2009, Vol.16 (1), p.54-64
Hauptverfasser: Kase, Robert, Hansen, Peter D, Fischer, Birgit, Manz, Werner, Heininger, Peter, Reifferscheid, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background, aim, and scope The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disrupting compounds (EDC). The main advantage of the ELRA is its high sample throughput and its robustness against cytotoxicity and microbial contamination. After a methodological adaptation to salinity of the ELRA, according to the first part of this study, which increased its salinity tolerance and sensitivity for 17-β-estradiol, the optimised ELRA was used to investigate 13 native sediments characterised by different levels of salinity and chemical contamination. The applicability of the ELRA for routine analysis in environmental assessment was evaluated. Salinity is often a critical factor for bioassays in ecotoxicological sediment assessment. Therefore, salinity of the samples was additionally adjusted to different levels to characterise its influence on elution and binding processes of receptor-binding substances. Materials and methods The ELRA was carried out with the human estrogen receptor α (ER) in a 96-well microplate format using the experimental setup known from the competitive immunoassay based on ligand-protein interaction. It is an important improvement that a physiologically relevant receptor was used as a linking protein instead of an antibody. The microplates were coated with a 17-β-estradiol-BSA conjugate, and dilution series of estradiol and of native sediment samples were added and incubated with the ER. After a washing step, a biotinylated mouse anti-ER antibody was added to each well. Receptor binding to estradiol, agonistic and antagonistic receptor binding, were determined by a streptavidin-POD-biotin complex with subsequent measurement of the peroxidase activity at the wavelength of 450 nm using a commercial ELISA multiplate reader. The sediment elutriates and pore water samples of sediments were tested in a dilution series to evaluate at which dilution step the receptor-binding potential ends. In the elution process (see Section 2.1 to 2.2), a method was developed to adjust the salinity to the levels of the reference testings, which offers an appropriate option to adjust the salinity in both directions. Statistical evaluation was made with a combination of the Mann-Whitney U test and the pT-method. Results This part of the study character
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-008-0060-x