Localization, Occurrence, and CSF Changes of SP-G, a New Surface Active Protein with Assumable Immunoregulatory Functions in the CNS
Conventional surfactant proteins (A, B, C, and D) are important players of the innate immunity in the central nervous system and serve as effective regulators of cerebrospinal fluid rheology, probably being involved in clearance of detrimental metabolites like beta-amyloid and phospho-tau. Recently,...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2019-04, Vol.56 (4), p.2433-2439 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conventional surfactant proteins (A, B, C, and D) are important players of the innate immunity in the central nervous system and serve as effective regulators of cerebrospinal fluid rheology, probably being involved in clearance of detrimental metabolites like beta-amyloid and phospho-tau. Recently, a novel surfactant protein, SP-G, was described in kidneys and peripheral endocrine and exocrine glands. So far, its presence and possible functions in the central nervous system are unknown. Therefore, our study aimed to elucidate the presence of SP-G in the brain and its concentration in normal and pathologic samples of cerebrospinal fluid in order to gain first insight into its regulation and possible functions. A total of 121 samples of human cerebrospinal fluid (30 controls, 60 hydrocephalus patients, 7 central nervous system infections, and 24 brain hemorrhage patients) and 21 rat brains were included in our study. CSF samples were quantified using a commercially available ELISA system. Results were analyzed statistically using SPSS 22, performing Spearman Rho correlation and ANOVA with Dunnett’s post hoc analysis. Rat brains were investigated via immunofluorescence to determine SP-G presence and colocalization with common markers like aquaporin-4, glial fibrillary acidic protein, platelet endothelial adhesion molecule 1, and neuronal nuclear antigen. SP-G occurs associated with brain vessels, comparable to other conventional SPs, and is present in a set of cortical neurons. SP-G is furthermore actively produced by ependymal and choroid plexus epithelium and secreted into the cerebrospinal fluid. Its concentrations are low in control subjects and patients suffering from aqueductal stenosis, higher in normal pressure hydrocephalus (
p
|
---|---|
ISSN: | 0893-7648 1559-1182 |
DOI: | 10.1007/s12035-018-1247-x |