Early cellular changes are indicators of pre-bleaching thermal stress in the coral host

Thermal stress causes the coral-dinoflagellate symbiosis to disassociate and the coral tissues to whiten. The onset and occurrence of this coral bleaching is primarily defined via the dinoflagellate responses. Here we demonstrate that thermal stress responses occur in the coral host tissues in the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental marine biology and ecology 2008-10, Vol.364 (2), p.63-71
Hauptverfasser: Ainsworth, T.D., Hoegh-Guldberg, O., Heron, S.F., Skirving, W.J., Leggat, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal stress causes the coral-dinoflagellate symbiosis to disassociate and the coral tissues to whiten. The onset and occurrence of this coral bleaching is primarily defined via the dinoflagellate responses. Here we demonstrate that thermal stress responses occur in the coral host tissues in the days before the onset of coral bleaching. The observed sequence of thermal responses includes reductions in thickness of coral tissue layers and apoptosis of the cells prior to reductions in symbiont density. In the days before the onset of coral bleaching the outer coral tissue layer (epithelium) thickness reduces and apoptosis occurs within the gastrodermis. Two days following this, coinciding with an initial reduction of symbiont density (by approximately 25%), gastrodermal thickness decreased and apoptosis of host cells was identified in the epithelium. This was eventually followed by large reduction in symbiont density (by approximately 50%) consistent with coral bleaching. Both pro-apoptotic and anti-apoptotic genes are identified in the reef building coral Acropora aspera, demonstrating the necessary pathways are present for fine control of host apoptosis. Our study shows that defining periods of host stress based on the responses defined by dinoflagellate symbiont underestimates the importance of early cellular events and the cellular complexity of coral host.
ISSN:0022-0981
1879-1697
DOI:10.1016/j.jembe.2008.06.032