Temperature-dependent schlieren effect in liquid flow for chemical analysis

In flow analysis, such as flow injection analysis, liquid lens is formed at the boundary between two adjacent liquid media which have different refractive indices. Light refraction at the liquid interface gives the so-called ‘schlieren signal’. Schlieren effect is both concentration-dependent and te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2018-10, Vol.188, p.74-80
Hauptverfasser: Suwanrut, Jintana, Chantipmanee, Nattapong, Kamsong, Wichayaporn, Buking, Supatana, Mantim, Thitirat, Saetear, Phoonthawee, Nacapricha, Duangjai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In flow analysis, such as flow injection analysis, liquid lens is formed at the boundary between two adjacent liquid media which have different refractive indices. Light refraction at the liquid interface gives the so-called ‘schlieren signal’. Schlieren effect is both concentration-dependent and temperature-dependent. In this work, the schlieren signal from temperature difference was quantitatively investigated for application in enthalpimetric measurement. The schlieren phenomena was then exploited for chemical analysis. A thermal insulated single flow line manifold was constructed using deionized water at 23 °C as the carrier. Deionized water at various temperatures in the range of 5–85 °C was injected into the carrier flow. A correlation between the schlieren signal and sample temperature was observed. A heat exchanger unit (HEU), consisting of a small volume glass-reaction chamber with a surrounding water jacket, was constructed. The unit was thermally insulated in a double layer cylindrical PVC unit. For demonstrating the applicability of temperature-dependent schlieren effect in chemical analysis, the exothermic oxidation reaction between acid dichromate and ethanol or ascorbic acid was employed with heat transferring to the surrounding water layer. When an aliquot of water from the HEU is injected into the constant temperature flow line the observed schlieren signal was dependent on the analyte concentration. Linear calibration (r2 > 0.99) were obtained covering the concentration range of ethanol and ascorbic acid as found in samples. The developed flow system provides good precision (RSD 
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2018.05.055