Resveratrol sensitizes lung cancer cell to TRAIL by p53 independent and suppression of Akt/NF-κB signaling

TRAIL is a promising anticancer agent that has the potential to sensitize a wide variety of cancer or transformed cells by inducing apoptosis. However, resistance to TRAIL is a growing concern. Current manuscript aimed to employ combination treatment to investigate resveratrol induced TRAIL sensitiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2018-09, Vol.208, p.208-220
Hauptverfasser: Rasheduzzaman, Mohammad, Jeong, Jae-Kyo, Park, Sang-Youel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TRAIL is a promising anticancer agent that has the potential to sensitize a wide variety of cancer or transformed cells by inducing apoptosis. However, resistance to TRAIL is a growing concern. Current manuscript aimed to employ combination treatment to investigate resveratrol induced TRAIL sensitization in NSCLC. A549 and HCC-15 cells were used in an experimental design. Cell viability was determined by morphological image, crystal violet staining and MTT assay. Apoptosis was evaluated by LDH assay, Annexin V and DAPI staining. Autophagy and apoptosis indicator protein were examined by western blotting. TEM and puncta assay was carried out to evaluate the autophagy. MTP and ROS activity was evaluated by JC-1 and H2DCFDA staining. Resveratrol is a polyphenolic compound capable of activation of tumor suppressor p53 and its pro-apoptotic modulator PUMA. Herein, we showed the p53-independent apoptosis by decrease the expression of phosphorylated Akt-mediated suppression of NF-κB that is also substantiated with the downregulation of anti-apoptotic factors Bcl-2 and Bcl-xl in NSCLC, resulting in an attenuation of TRAIL resistance in combined treatment. Furthermore, apoptosis was induced in TRAIL-resistant lung cancer cells with a co-treatment of resveratrol and TRAIL assessed by the loss of MMP, ROS generations which resulting the translocation of cytochrome c from the mitochondria into the cytosol due to mitochondrial dysfunction. Moreover, autophagy flux was not affected by resveratrol-induced TRAIL-mediated apoptosis in NSCLC. Overall, targeting the NF-κB (p65) pathway via resveratrol attenuates TRAIL resistance and induces TRAIL-mediated apoptosis which could be the effective TRAIL-based cancer therapy regimen.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2018.07.035