Effect of swine and dairy manure amendments on microbial communities in three soils as influenced by environmental conditions
Understanding the impacts of manure amendments on soil microorganisms can provide valuable insight into nutrient availability and potential crop and environmental effects. Soil microbial community characteristics, including microbial populations and activity, substrate utilization (SU) profiles, and...
Gespeichert in:
Veröffentlicht in: | Biology and fertility of soils 2006-10, Vol.43 (1), p.51-61 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding the impacts of manure amendments on soil microorganisms can provide valuable insight into nutrient availability and potential crop and environmental effects. Soil microbial community characteristics, including microbial populations and activity, substrate utilization (SU) profiles, and fatty acid methyl ester (FAME) profiles, were compared in three soils amended or not amended with dairy or swine manure at two temperatures (18 and 25°C) and two soil water regimes (constant and fluctuating) in laboratory incubation assays. Soil type was the dominant factor determining microbial community characteristics, resulting in distinct differences among all three soil types and some differing effects of manure amendments. Both dairy and swine manures generally increased bacterial populations, substrate diversity, and FAME biomarkers for gram-negative organisms in all soils. Microbial activity was increased by both manures in an Illinois soil but only by dairy manure in two Maine soils. Dairy manure had greater effects than swine manure on SU and FAME parameters such as increased activity, utilization of carbohydrates and amino acids, substrate richness and diversity, and fungal FAME biomarkers. Temperature and water regime effects were relatively minor compared with soil type and amendment, but both significantly affected some microbial responses to manure amendments. Overall, microbial characteristics were more highly correlated with soil physical factors and soil and amendment C content than with N levels. These results indicate the importance of soil type, developmental history, and environmental factors on microbial community characteristics, which may effect nutrient availability from manure amendments and should be considered in amendment evaluations. |
---|---|
ISSN: | 0178-2762 1432-0789 |
DOI: | 10.1007/s00374-005-0060-7 |