Effects of pre-training pedunculopontine tegmental nucleus lesions on delayed matching- and non-matching-to-position in a T-maze in rats

Lesions of the pedunculopontine tegmental nucleus (PPTg) can impair spatial learning tasks, but it is not clear whether those detrimental effects depend on the specific training conditions (for example, number of response choices available) or are secondary to enhanced anxiety. In the present work,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioural brain research 2005-05, Vol.160 (1), p.115-124
Hauptverfasser: Núria, Satorra-Marín, Sandra, Homs-Ormo, Rosa, Arévalo-García, Ignacio, Morgado-Bernal, Margalida, Coll-Andreu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lesions of the pedunculopontine tegmental nucleus (PPTg) can impair spatial learning tasks, but it is not clear whether those detrimental effects depend on the specific training conditions (for example, number of response choices available) or are secondary to enhanced anxiety. In the present work, rats with either bilateral excitotoxic (ibotenate) lesions of the PPTg (lesion group) or with vehicle infusions (control group) were tested in an elevated plus-maze, in order to measure anxiety-like behaviours and spontaneous locomotion. Subsequently, they were trained in a delayed matching-to-position (DMTP) task in a T-maze (a two-response choice task). After reaching a predefined learning criterion, or after a maximum of 30 training sessions, the animals were trained in a delayed non-matching-to-position (DNMTP) task. Lesioned animals made less grooming episodes, stretch-attend postures and closed arm entries than controls in the elevated plus-maze, suggesting slightly lower anxiety levels. None of the lesioned rats reached the learning criterion for the DMTP, and overall accuracy levels were significantly lower in those rats, compared to controls. In the DNMTP task, lesioned animals showed lower accuracy levels and higher side bias than controls in some of the sessions, but there were no significant differences between the two groups in the proportion of animals reaching the learning criterion. It is concluded that spatial learning deficits induced by damage to the PPTg are not secondary to enhanced anxiety. Instead, those deficits seem to be influenced by several conditions that modify task demands, the number of response choices being only one of such conditions.
ISSN:0166-4328
1872-7549
DOI:10.1016/j.bbr.2004.11.022