MicroRNA-92a-1-5p influences osteogenic differentiation of MC3T3-E1 cells by regulating β-catenin
Osteoblastic differentiation is a complex process that is critical for proper bone formation. An increasing number of studies have suggested that microRNAs (miRNAs) are pivotal regulators in various physiological and pathological processes, including osteogenesis. Here, we discuss the influence of m...
Gespeichert in:
Veröffentlicht in: | Journal of bone and mineral metabolism 2019-03, Vol.37 (2), p.264-272 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Osteoblastic differentiation is a complex process that is critical for proper bone formation. An increasing number of studies have suggested that microRNAs (miRNAs) are pivotal regulators in various physiological and pathological processes, including osteogenesis. Here, we discuss the influence of miRNA-92a-1-5p on osteogenic differentiation. We found that miR-92a-1-5p was obviously downregulated during osteogenic differentiation of MC3T3-E1 cells. Gain-of-function and loss-of-function experiments revealed that miR-92a-1-5p was a negative regulator of osteogenic differentiation. Experimental validation demonstrated that β-catenin, which acts as a positive regulator of osteogenic differentiation, was negatively regulated by miR-92a1-5p. The findings of this study provide new insights into the possibility of miR-92a1-5p being a potential therapeutic target in the management of bone regeneration-related diseases. |
---|---|
ISSN: | 0914-8779 1435-5604 |
DOI: | 10.1007/s00774-018-0935-y |