Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model
•Development of pulsatile cardiovascular model.•Systematic calculation of nominal parameter values.•Used sensitivity analysis, subset selection to determine 5 identifiable parameters.•Estimated identifiable parameters against left ventricular pressure and volume.•Asymptotic and Bayesian prediction o...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2018-10, Vol.304, p.9-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Development of pulsatile cardiovascular model.•Systematic calculation of nominal parameter values.•Used sensitivity analysis, subset selection to determine 5 identifiable parameters.•Estimated identifiable parameters against left ventricular pressure and volume.•Asymptotic and Bayesian prediction of model uncertainty.
Mathematical models are essential tools to study how the cardiovascular system maintains homeostasis. The utility of such models is limited by the accuracy of their predictions, which can be determined by uncertainty quantification (UQ). A challenge associated with the use of UQ is that many published methods assume that the underlying model is identifiable (e.g. that a one-to-one mapping exists from the parameter space to the model output). In this study we present a novel workflow to calibrate a lumped-parameter model to left ventricular pressure and volume time series data. Key steps include using (1) literature and available data to determine nominal parameter values; (2) sensitivity analysis and subset selection to determine a set of identifiable parameters; (3) optimization to find a point estimate for identifiable parameters; and (4) frequentist and Bayesian UQ calculations to assess the predictive capability of the model. Our results show that it is possible to determine 5 identifiable model parameters that can be estimated to our experimental data from three rats, and that computed UQ intervals capture the measurement and model error. |
---|---|
ISSN: | 0025-5564 1879-3134 |
DOI: | 10.1016/j.mbs.2018.07.001 |